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Self-Supervised Learning

/

¢ Supervised Learning vs. Self-Supervised Leaming
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*»  Self-Supervised Learning
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*»  Self-Supervised Learning

*  Pretext Tasks: Examplar, Context Prediction, Jigsaw Puzzle, Count, Rotation, . ..

*  Contrastive Leamning: MoCo, SimCLR, ...
*  Non-Contrastive Leaming: BYOL
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Self-Supervised Learning

¢ MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (CVPR, 2020)
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Self-Supervised Learning

¢ MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (CVPR, 2020)
*  Momentum Update
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Self-Supervised Learning

¢ SimCLR: A Simple Framework for Contrastive Learning of Visual Representations (ICML, 2020)

Batch Size (Without Memory Queue)

Deep Embedding Layer

InfoNCE Loss Function
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Self-Supervised Learning

/

*  Posttive Pair (Without Negative Examples)
*  Momentum Update
* L2 LossFunction

Online Network
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¢ BYOL: Bootstrap Your Own Latent— A New Approach to Self-Supervised Learning (NeurlPS, 2020)
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Applications of Self-Supervised Learning

>

Multi-Modal Learning
*  Contrastive Leaming of Medical Visual Representations from Paired Images and Text (arXiv, 2020)

*  Video
*  Spatiotemporal Contrastive Video Representation Leaming (CVPR, 2021)

% Reinforcement Learning

*  Generalization in Reinforcement Learing by Soft Data Augmentation (IEEE ICRA, 2021)

s Audio

*  Multi-Format Contrastive Leaming of Audio Representations (arXiv, 2021)

¢ Graph
*  Molecular Contrastive Learmning of Representations via Graph Neural Networks (arXiv, 2021)
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Applications of Self-Supervised Learning

Multi-Modal

¢ Contrastive Learning of Medical Visual Representations from Paired Images and Text (arXiv, 2020)
Stanford CHEHO| A S8R 202214 03 03 7| =2 2 745 Q18

CONTRASTIVE LEARNING OF MEDICAL VISUAL
REPRESENTATIONS FROM PAIRED IMAGES AND TEXT

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning & Curtis P. Langlotz
Stanford University
{yuhaozhang, hjian42, ysmiura, manning, langlatz}@stanfard .edu

ABSTRACT

Learning visual representations of medical images is core to medical image un-
derstanding but its progress has been held back by the small size of hand-labeled
datasets. Existing work commonly relies on transferring weights from ImageNet
pretraining, which is suboptimal due to drastically different image characteristics,
or rule-based label extraction from the textual report data paired with medical
images, which is inaccurate and hard to generalize. We propose an alternative
unsupervised strategy to learn medical visual representations directly from the
naturally occurring pairing of images and textual data. Our method of pretraining
medical image encoders with the paired text data via a bidirectional contrastive ob-
jective between the two modalities is domain-agnostic, and requires no additional
expert input. We test our method by transferring our pretrained weights to 4 med-
ical image classification tasks and 2 zero-shot retrieval tasks, and show that our
method leads to image representations that considerably outperform strong base-
lines in most settings. Notably, in all 4 classification tasks, our method requires
only 109% as much labeled training data as an ImageNet initialized counterpart to
achieve better or comparable performance, demonstrating superior data efficiency.

-12- S DMQA



Applications of Self-Supervised Learning

Multi-Modal

¢ Contrastive Learning of Medical Visual Representations from Paired Images and Text (arXiv, 2020)
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Severe cardiomegaly Radiograph shows
is noted in the image pleural effusion in
with enlarged... the right lobe...

Figure 1: Two example chest radio-
graph images with different abnormality
categories, along with sentences from
their paired textual report and example
views indicative of their characteristics.
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Applications of Self-Supervised Learning

Multi-Modal

¢ Contrastive Visual Representation Learning from Text (ConVIRT)
«  O|= O|O|X|2t H|AE [|O|E &= ArESH0] H|O|Ef XHA|0f| C
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Figure 2: Overview of our ConVIRT framework. The blue and green shades represent the image
and text enmdmg pipelines, respectively. Our method relies on maximizing the agreement between

the true image-text representation pairs with bidirectional losses /(¥ %) and (%),
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Multi-Modal

o0

% Contrastive Visual Representation Learning from Text (ConVIRT)
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: Overview of our ConVIRT framework. The blue and green shades represent the image

and text enmdmg pipelines, respectively. Our method relies on maximizing the agreement between

the true image-text representation pairs with bidirectional losses /(¥ %) and (%),
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Multi-Modal

¢ Contrastive Visual Representation Learning from Text (ConVIRT)
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Figure 2: Overview of our ConVIRT framework. The blue and green shades represent the image
and text enmdmg pipelines, respectively. Our method relies on maximizing the agreement between
the true image-text representation pairs with bidirectional losses /(¥ %) and (%),
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Multi-Modal

¢ Contrastive Visual Representation Learming from Text (ConVIRT)
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Figure 2: Overview of our ConVIRT framework. The blue and green shades represent the image
and text enmdmg pipelines, respectively. Our method relies on maximizing the agreement between
the true image-text representation pairs with bidirectional losses /(¥ %) and (%),
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Multi-Modal

/

¢ Experiments — Image Classification
*  Four Representative Medical Image Classification Tasks
v RSNA Pneumonia Detection: Binary Classification (Prevmonia or a normal)
v CheXpert: Multi-Label Binary Classification (Azelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion)
v' COVIDx: Multi-Class Classification (COVID19, non-COVID Preumonia, Normal Categories)
v" MURA: Binary Classification (4bnormal, Normal)
«  COVIDxY| CH2t Test Accuracy / O| M 2HH 2E 1t & YSHA AUC Metric 2 2 H| It
»  DataEfficiencyS B|.1St7| 23K 1%, 10%, All 23 H|O|E{ 2 gf50H 0[0|X| QIZEHEZ Bt
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Multi-Modal

/

¢ Experiments — Image Classification

*  Four Representative Medical Image Classification Tasks

Table 1: Results for the medical image classification tasks: (a) linear classification; (b) fine-tuning
setting. All results are averaged over 5 independent models. Best results for each setting are in
boldface. COVIDx 1% setting is omitted due to the scarcity of labels in COVIDx.

(a)
RSNA (AUC) CheXpert (AUC) COVIDx (Accu.) MURA (AUC)
Method 1% 10%  all 1% 10% all 10% all 1% 10% all
General initialization methods
Random Init. 550 67.3 723 582 637 662 69.2 73.5 50.9 56.8 62.0
ImageNet Init. 82.8 854 869 757 797 810 837 88.6 63.8 741 T79.0

In-domain initialization methods
Caption-Transformer 84.8 875 895 772 826 839 800 890.0 66.5 763 BIR

Caption-LSTM 80.8 90.8 91.3 852 853 862 845 91.7 75.2 8l.5 84.1
Contrastive-Binary 88.0 005 90.8 845 856 858 805 00.8 76.8 81.7 853
ConVIRT (Ours) 90.7 91.7 92.1 859 86.8 87.3 859 91.7 81.2 851 87.6
(b)
RSNA (AUC) CheXpert (AUC) COVIDx (Accu.) MURA (AUC)

Method 1% 10% all 1% 10% all 10% all 1% 10% all
General initialization methods

Random Init. 71.9 822 885 704 8l.1 858 754 87.7 56.8 6l.6 79.1
ImageNet Init. 83.1 87.3 90.8 80.1 848 876 844 90.3 72.1 81.8 87.0

In-domain initialization methods

Caption-Transformer 86.3 89.2 92,1 815 864 882 3883 02.3 75.2 832 8§16
Caption-LSTM 87.2 88.0 91.0 835 858 878 B3R 90.8 787 833 818
Contrastive-Binary 87.7 899 01.2 862 86.1 877 895 90.5 80.6 B840 8R4
ConVIRT (Ours) 88.8 91,5 927 87.0 88.1 881 903 92.4 81.3 86.5 89.0
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¢ Experiments — Comparisons to Image-only Contrastive Learning
*  SimCLR,MoCov2: L #% 21 O|O| X| 7|HFO| T 2= St Wi &Y

. J|EYHE2onjx| L BHS Y
e ERY VB[
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=
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otEoh= 2 O0fX| 2 2

+  N[2HSH= ConVIRTE O|O[X|2H HIAE HS SA|0| AR 2 =M 2| = O|0]X| O =5 =8

Table 4: Comparisons of ConVIRT to image-only un-
supervised image representation learning approaches.

RSNA Linear CheXpert Linear Image-Image

Method (1%, AUC) (1%, AUC) (Prec@10)
ImageNet 828 75.7 14.4
SimCLR 86.3 71.4 17.6
MoCo v2 86.6 81.3 20.6
ConVIRT 90.7 85.9 42.9
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Applications of Self-Supervised Learning

Video

¢ Spatiotemporal Contrastive Video Representation Leaming (CVPR, 2021)
«  Google Research, Comell CHSHO{| A AHSHE 0 2022 F 032 032 7= 2 1142 218
Spatiotemporal Contrastive Video Representation Learning

Rui Qian* '12? Tianjian Meng* ! Boging Gong' Ming-Hsuan Yang'
Huisheng Wang* Serge Belongie!>*® Yin Cui'

1Goog]e Research 2Cornell University 3Cornell Tech
Abstract c0 )
g7s R3D-101 R3D-152 (2x)

We present a self-supervised Contrastive Video Repre- 70 A5 (2%) RID-50 (4]
. . ; . g -
sentation Learning (CVRL) method to learn spatiotemporal 3 g JR30-50
visual representations from unlabeled videos. Our rep- B

. . . ~ 60
resentations are learned using a contrastive loss, where &
two augmented clips from the same short video are pulled 5 33 m:
together in the embedding space, while clips from different % 0
videos are pushed away. We study what makes for good % 45
data augmentations for video self-supervised learning and £ 40| Supervised learning = - ImageNet inflated

. . . . o 2 | cvRL ¥+ SIMCLR inflated
find that both spatial and temporal information are crucial. 35
25 50 100 200 400 600

We carefully design data augmentations involving spatial
and temporal cues. Concretely, we propose a temporally
consistent spatial augmentation method to impose strong Figure 1. Kinetics-600 top-1 linear classification accuracy of
different spatiotemporal representations. CVRL outperforms Ima-
geNet supervised [ 1] and SimCLR unsupervised [ | /] pre-training
using the same 3D inflated ResNets, closing the gap between un-
supervised and supervised video representation learning.

number of paramters (M)

spatial augmentations on each frame of the video while
maintaining the temporal consistency across frames. We
alse propose a sampling-based temporal augmentation
method to avoid overly enforcing invariance on clips that
are distant in time. On Kinetics-600, a linear classifier

trained on the representations learned by CVRL achieves for images have their counterparts (e.g., 3D SIFT [55]) in
70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) videos, where the temporal dimension of videos gives rise
backbone, outperforming ImageNet supervised pre-training to key differences between them. Similarly, state-of-the-art
by 15.7% and SimCLR unsupervised pre-training by 18.8% neural networks for video understanding [57, 9, 31, 71, 17,
using the same inflated R3ID-50. The performance of ] often extend 2D convolutional neural networks [33, 30]
CVRL can be further improved to 72.9% with a larger for images along the temporal dimension. More recently,
R3D-152 (2x filters) backbone, significantly closing the unsupervised or self-supervised learning of representations
gap between unsupervised and supervised video represen- from unlabeled visual data [2, 10, 26, 7] has gained mo-
tation learning. Our code and models will be available at mentum in the literature partially thanks to its ability to
hitps:/github. com/tensorflow/models/tree/master/official/. model the abundantly available unlabeled data.
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¢ Spatiotemporal Contrastive Video Representation Learning (CVPR, 2021)

*
+ FNO|AIBZHH BHES A3t 20| B4 0ls]o] A
. o SABL=
= H= —

sosacssssssssassnsse
T sn W 1 g
< e X Y

1 ,“"'
¢

Temporally consistent spatial augmentation

Figure 3. Illustration of temporally consistent spatial augmen-
tation. The middle row indicates frame-level spatial augmenta-
tions without temporal consistency which would be detrimental to

the video representation learning.
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/

s Self-Supervised Contrastive Video Representation Learning (CVRL)

o BH EHHIEZ P SImCLR M-8 — Positive Pair2} Negative Examples S 2|
v NELCHE Fak(Video 1, Video 2) 21 EH
v ot L MEEI M E CHE A|E 2| & Clip Positive Pair, CFHE &) L M EHEl 5 Clip= Negative Examples
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— e
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: i o = T W

3D CNN L

3DCNN

Spatial-Temporal Contrastive
Visual Representation Loss

3DCNN
Clip3

) Temporafly i .. §"‘l‘ ERCNN
spatial afigmentation . m
\Wideo2 Clip 4 /

Figure 2. Overview of the proposed self-supervised contrastive video representation learning (CVRL) framework. From a short
video, we randomly sample 2 clips with the same length. We then apply a temporally consistent spatial augmentation to each of the video

clips and feed it to a 3D backbone with an MLP head. The contrastive loss is used to train the network to attract clips from the same video
and repel clips from different videos in the embedding space.

Temporally consistent
spatial augmentation

Tefhporally consistent
spptial augmentation

hiahaa
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Video

¢ Self-Supervised Contrastive Video Representation Learning (CVRL)
- FY EHSSS 6 SimCLR X8 -H|0|H 5 7|

v" Positive Pair, Negative ExamplesOf| A| 7t 2 2 A2tE H|O[E SZ 7|8 H&

Algorithm 1: Temporally consistent spatial aug-
mentation procedure.

Input: Videoclip V = {f1, f2,---, [ar} with M frames
Resize: Randomly resize to a scale S from [256, 320]
Crop: Randomly crop a spatial region of 224 x 224
Flip: Draw a flag F; from {0, 1} with 50% on 1
Jitter: Draw a flag F; from {0, 1} with 80% on 1
Grey: Draw a flag F; from {0, 1} with 20% on 1
for ke {1,...,M} do

fr. = Resize( f,scale = S)
i = Crop(f1)
Ji = Flip(J}) if Fy = 1
f1. = Color_jitter(f7,) if F; =1
f1, = Greyscale(f7,) if Fy = 1
f1. = Gaussian blur(f7,)
end for
Output: Augmented video clip V' = {f{, f3.--+ , far}

Temporally consistent
spatial augmentation

Temporally consistent
spatial augmentation

il
-

1

1

1

1

1

1

1

Temporally consistent
spatial augmentation

Temporally consistent
spatial augmentation

Video 2

Figure 2. Overview of the proposed self-supervised contrastive video representation learning (CVRL) framework. From a short
video, we randomly sample 2 clips with the same length. We then apply a temporally consistent spatial augmentation to each of the video
clips and feed it to a 3D backbone with an MLP head. The contrastive loss is used to train the network to attract clips from the same video
and repel clips from different videos in the embedding space.
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¢ Self-Supervised Contrastive Video Representation Learning (CVRL)
- B EMYGS I6H SimCLR M-8 - G4 29
v OAZZFE A

O%MLPE SHH O Q0f

Temporally consistent
spatial augmentation

3DCNN
3DCNN

Spatial-Temporal
Visual Representation

3DCNN

Clip

Clip

Temporally consistent
spatial augmentation

Clip

Temporally

3D CNN

spatial augmentation

" Video2 clipa g

<@——p  Attract

<4¢——>» Repel

Contrastive
Loss

Figure 2. Overview of the proposed self-supervised contrastive video representation learning (CVRL) framework. From a short

video, we randomly sample 2 clips with the same length. We then apply a temporally consistent spatial augmentation to each of the video
clips and feed it to a 3D backbone with an MLP head. The contrastive loss is used to train the network to attract clips from the same video

and repel clips from different videos in the embedding space
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Applications of Self-Supervised Learning

Video

¢ Self-Supervised Contrastive Video Representation Learning (CVRL)
—_——] 4 . . -0t
o M HHSHSZ 26l SImCLR &8 — InfoNCE Loss Function l exp (%)
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v MLPE ROEIHESS ALZS10] T Bl 3 exp (Z5) + Sy o ()
i: Anchor
i*: Positive

k: Negative Examples
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3D CNN S A

3DCNN

Spatial-Temporal Contrastive
Visual Representation Loss

3DCNN
Clip3

: ﬂ&:} 3‘“ i
) Temporally i .. QH‘ l‘ ERCNN
spatial augmentation o M
R Clipa / \ )

Figure 2. Overview of the proposed self-supervised contrastive video representation learning (CVRL) framework. From a short
video, we randomly sample 2 clips with the same length. We then apply a temporally consistent spatial augmentation to each of the video
clips and feed it to a 3D backbone with an MLP head. The contrastive loss is used to train the network to attract clips from the same video
and repel clips from different videos in the embedding space.
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Video

/

¢ Experiments — Video Classification

Kinetics-600: Multi-Class Classification (6007 | X| @M

e Supervised Learning / Semi-Supervised Leaming®i| CHoF 21t

Method Backbone Accuracy

top-1  top-5

Supervised 3D_R§O 785 941
learmine 3D—R30 (2x) 78;} 03.7
© 3D-R50(4x) | 77.5 928
ImageNet SD_R:EO 542 775
inﬁiltecl 3D—R30 (2x) | 56.5 78.8
3D-R50 (4x) | 55.7 719

: 3D-R50 48.0 71.5
S}i:gi'j 3D-R50 (2x) | 536 761
3D-R50 (4x) | 56.3  78.2

3D-R50 64.1 85.8

CVRL 3D-R50(2x) | 66.6  87.5
3D-R50(4x) | 68.2  88.0

Table 3. Main results on Kinetics-600. CVRL shows its effec-
tiveness by surpassing both ImageNet pre-training inflated weights
and SimCLR inflated weights by large margins on various network

architectures.

- 27 -

=)

Top-1 Acc. (A vs. Sup.)

Method Backbone Label fraction
1% 10%
Supervised 3D-R50 43 153
| 3D-RS0 (2x) | 3.8 44.1
€ | 3D-R50 (4x) | 0.4 43.7
- 3D-R50 [73(13.00) 32.6(7.31)
l‘:}‘};ﬁ?j‘ 3D-R50 2x) | 19.7 (15.91) 53.3 (9.2
3D-R50 (4x) | 19.5(19.11) 517 (8.01)
. 3D-R50 [0.7(15.41) 483 (3.01)
S};‘;i‘j 3D-R50 (2x) | 20.9 (17.11)  52.5 (8.41)
3D-R50 (4x) | 20.0 (19.61) 55.5(11.81)
3D-R50 36.7 (32.41) 56.1(10.87)
CVRL | 3D-R50 (2x) | 41.0 (37.21) 59.4 (15.31)
3D-R50 (4x) | 42.3(41.91) 61.0 (17.31)

Table 4. Semi-supervised learning results on Kinetics-600.
When fine-tuning the entire network with only 1% and 10% la-
beled data, CVRL outperforms supervised learning, ImageNet pre-
training and SimCLR pre-training significantly.
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Video

¢ Experiments — Ablation Studies
« 7|2 SimCLR= MLP Layer 5=, Batch Size, EpochOl| [}2} 45 X}O| 7+ =Y
«  HN|2HSt= CVRLE %X 2| SHO[m{ L2044 EH

Backbone | Hidden layers | Params Accuracy
top-1  top-5
0 3LOM | 526 775 Backbone # Pre-training Accuracy
3D-R50 : S6.IM7) 613 84.2 epochs top-1  top-5
2 40.3M | 622 846 I k)
3 45M | 623 847 100 61.3 842
3D-R50 200 62.9 85.2
Table 5. Performance of different number of hidden layers in =T e 300 63.9 5.7
MLP used in CVRL pre-training (100 epochs). “Params” indi- ~ . _
cates the total number of parameters in the pre-training network. 500 64.1 85.8
Results of linear evaluation on top of the same backbone are re- 100 64.5 86.0
ported. 200 66.4  86.9
. Accuracy - o -
Backbone | Batch size top-1  top-3 500 6_6°6 8?.5
256 60.4  83.1 100 64.7 86.2
512 61.1 837 3D-R50 (4x) 200 67.4  88.0
3D-R50
1024 61.3 84.2 300 68.2 88.0
2048 584 825
Table 7. Performance of different batch sizes used in CVRL pre- Table 9. Performance of different pre-training epochs. The per-
training (100 epochs). Linear evaluation results are reported. formance starts to saturate after 300 epochs.
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Generalization in Reinforcement Learning by Soft Data Augmentation

Nicklas Hansen*f, Xiaolong Wang*

Abstract— Extensive efforts have been made to improve
the generalization ability of Reinforcement Learning (RL)
methods via domain randomization and data augmentation.
However, as more factors of variation are introduced dur-
ing training, optimization becomes increasingly challenging,
and empirically may result in lower sample efficiency and
unstable training. Instead of learning policies directly from
augmented data, we propose SOft Data Augmentation (SODA),
a method that decouples augmentation from policy learning.
Specifically, SODA imposes a soft constraint on the encoder
that aims to maximize the mutual information between latent
representations of augmented and non-augmented data, while
the RL optimization process uses strictly non-augmented data.
Empirical evaluations are performed on diverse tasks from
DeepMind Control suite as well as a robotic manipulation task,
and we find SODA to significantly advance sample efficiency,
generalization, and stability in training over state-of-the-art
vision-based RL methods.’
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test

training random colors video backgrounds

(a) Environments for DeepMind Control tasks. We consider
5 challenging continuous control tasks from this benchmark.

test

video backgrounds

training random colors

(b) Environments for robotic manipulation. The task is to
push the yellow cube to the location of the red disc.
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*+  OffPolicy Z2It52 ME 584, o5 P88, ¢itel 50| Eo{X|= 12X

9

random random
convolution overlay

unmodified

Fig. 4. Data augmentation. We consider the following two
data augmentations: random convolution (as proposed by [9],
[16]) and random overlay (novel).
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test

training random colors video backgrounds

(a) Environments for DeepMind Control tasks. We consider
5 challenging continuous control tasks from this benchmark.

video backgrounds

training random colors

(b) Environments for robotic manipulation. The task is to
push the yellow cube to the location of the red disc.

Fig. 1. Generalization in RL. Agents are trained in a fixed
environment (denoted the training environment) and we mea-
sure generalization to unseen environments with (i) random
colors and (ii) video backgrounds. To simulate real-world
deployment, we additionally randomize camera, lighting, and
texture during evaluation in the robotic manipulation task.
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. MENTIOE) EH S - BRE|S SET AY AT f(9) S
v e dade Rl f(o)E 55| Rl + BHA = L
v Step: S 7|EE HESH| B2 dEi= dReE M E
v Step2:5Z7|BE HECH JEI=BYOLYE HE

representation learning on augmented data

encoder projection predictor

consi stency

\&

reinforcement learning on non-augmented Q

encoder policy

a- f() “()(

Tolo)

feature space

é = stOp-gradiey

Fig. 2. SODA architecture. Left: an observation o is augmented to produce a view o', which is then encoded and projected
into 2’ = go(fp(0')). Likewise, o is encoded by f,, and projected by g, to produce features z*. The SODA objective is then
to predict z* from z’ by hy formulated as a consistency loss. Right: Reinforcement Learning in SODA. The RL task remains
unchanged and is trained directly on the non-augmented observations o. ema denotes an exponential moving average.
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+ JENHIOIE) B SHe -SREE P MBY AR f(o) &S
v Stepl: SE 7| EES HESHK| 2 =

v SoftActorCrific (SAC) 2818t 22| E S ALRSI0] Q1AL 28t 001 E HM(Policy) ot

representation learning on augmented data @‘Iforcement learning on non-augmented da}
5 encoder projection predictor 0 encoder  policy
’\‘ -’/
fol*) !1/)(',)J—>f hy(-) 2
/\\ S ‘
- ; ema ; ema .
B ’ consistency
» < 5 iy
£\ | -
Gl 4

feature space é = stOp-gradiey

Fig. 2. SODA architecture. Left: an observation o is augmented to produce a view o', which is then encoded and projected
into 2’ = go(fp(0')). Likewise, o is encoded by f,, and projected by g, to produce features z*. The SODA objective is then
to predict z* from z’ by hy formulated as a consistency loss. Right: Reinforcement Learning in SODA. The RL task remains
unchanged and is trained directly on the non-augmented observations o. ema denotes an exponential moving average.
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. MENEIOIE) E¥ S - BREIS BHF AEY ATC () B
v Swep2:SE7|BEHECH JEl=BYOLYH HE
v HEYE0| 5Z 78S B85 Positive Pair J 2
v' L2 Loss Function
Lsopa(2,2%;0) = E¢r [| 1Z, — z5] |2]
representation learning on augmented data \ A *
Z Z
encoder projection predictor Wheref £ he (Z’),Z) £ - ,ZZ —
g 2], = i,
fo(-) go(*) (—>~ @—» Z
/\\ - A ‘
Ho) b~ T ,; _ I: ema I; ema cons_is.;eqcy MomentumUpdate
LA saa Lo (Target Network)
o) >t 90 () :—//—» z A
= . e Ptarget < TPtarget T (1 = Dboniine

Fig. 2. SODA architecture. Left: an observation o is augmented to produce a view o', which is then encoded and projected
into 2’ = go(fp(0')). Likewise, o is encoded by f,, and projected by g, to produce features z*. The SODA objective is then
to predict z* from z’ by hy formulated as a consistency loss. Right: Reinforcement Learning in SODA. The RL task remains
unchanged and is trained directly on the non-augmented observations o. ema denotes an exponential moving average.
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v PseudoCode

Algorithm 1 Soft Data Augmentation (SODA)

S

o e kW

#,: randomly initialized network parameters
w: RL updates per iteration
7: momentum coefficient
for every iteration do
for update = 1.2, ...,w do
Sample batch of transitions v ~ BB
Optimize Lpy, (v) wrt 0
Sample batch of observations o ~ B
Augment observations o' = t(0), t ~ T
Compute online predictions Z = hg(gg(fg(0')))
Compute target projections z* = gy (fy(0))
Optimize Lsopa (2, 2*) wrt 6
Update v < (1 — 7)1 + 76
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° 57H 9_' %701 0‘” &ll -g— unmodified

walker_walk (training) walker_stand (training) cartpole_swingup (training) ball_in_cup_catch (training)

random random
convolution overlay

finger_spin (training)

1000

800
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average return

/"'
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1000 walker_walk (evaluation) walker_stand (evaluation) cartpole_swingup (evaluation) ball_in_cup_catch (evaluation)

finger_spin (evaluation)

800
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400

average return

200

] 1
0.0 0.1 0.2 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0500 0.1 0.2 0.3 04 0500 01 0.2 0.3 0.4 0.5 0.0
number of frames (M) number of frames (M) number of frames (M) number of frames (M)

—— SAC —— SAC (DR) —— SAC (conv) = SQDA (conv)

0.1

02 03 04 05
)

number of frames (

Fig. 3. Random convolution. 7op: average return on the training environment during training. Bottom: periodic evaluation
of generalization ability measured by average return on the random color environment. SODA exhibits sample efficiency
and convergence similar to SAC but improves generalization significantly. Average of 5 runs, shaded area is std. deviation.
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SAC —— SAC (DR) SAC (overlay) - SODA (overlay)

0.1 02 03 04
number of frames (M)

0.5

Fig. 6. Random overlay. 7op: average return on the training environment during training. Bottom: periodic evaluation of
generalization ability measured by average return on the random color environment. SODA offers better sample-efficiency
than the novel SAC (overlay) baseline and similar generalization to SODA (conv) even though there is minimal visual
similarity between random overlays and the random color environment. Average of 5 runs, shaded area is std. deviation.
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« Experiments— 222} -5 EHEE

- SISE O O|METISHHE BX| Zot 2hE THd(Video Backgrounds, Random Colors)

«  HAE2HFZ0A sH S dore] A2 "o Bn 22 F7t

TABLE I. Generalization. Average return of methods trained in a fixed environment and evaluated on: (left) DMControl-GB
with natural videos as background; and (right) DMControl-GB with random colors. Mean and std. deviation of 5 runs.

video backgrounds random colors
DMControl-GB CURL RAD PAD SAC SAC SODA SAC SODA CURL RAD PAD SODA
(generalization) [19] [9] [42] (DR)  (conv) (conv) (overlay) | (overlay) [19] [9] [42] (overlay)
walker, 556 606 717 520 169 635 718 768 445 400 468 692
walk +133 463 +79 +107 +124 +48 +47 +38 +99 +61 +47 +68
walker, 852 745 935 839 435 9203 960 955 662 644 797 893
stand +75 +146 +20 +58 +100 +56 +2 +13 +54 +88 +46 +12
cartpole, 404 373 521 524 176 474 718 758 454 590 630 805
swingup +67 +72 +76 +184 +62 +143 +30 +62 +110 +53 +63 +28
ball_in_cup, 316 481 436 232 249 539 713 875 231 541 563 949
catch +119 +26 +55 +135 +190 +111 +125 +56 +92 +29 +50 +19
finger, 502 400 691 402 355 363 607 695 691 667 803 793
spin +19 464 +80 4208 +88 +185 +68 +97 +12 +154  +72 +128
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Google DeepMindOf| A A5t 10 20225 03& 03 7| & 2 143 218

Multi-Format Contrastive Learning of Audio

Representations
Luyu Wang Adron van den Qord
Google DeepMind Google Deepmind
luyuwang@google.com avdnoord@google.com
Abstract

Recent advances suggest the advantage of multi-modal training in comparison with
single-modal methods. In contrast to this view, in our work we find that similar
gain can be obtained from training with different formats of a single modality. In
particular, we investigate the use of the contrastive learning framework to learn
audio representations by maximizing the agreement between the raw audio and its
spectral representation. We find a significant gain using this multi-format strategy
against the single-format counterparts. Moreover, on the downstream AudioSet
and ESC-50 classification task, our audio-only approach achieves new state-of-

the-art results with a mean average precision of 0.376 and an accuracy of 90.5%,
respectively.
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«  2LC|2 [|O|E{= Waveform, Spectrogram2 2 H210| 7t
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« 2|2 53 352 P/l SimCLR M-8 —Positive2} Negative Examples "3 2|
v otRLC|2O0|H L MZ CHE AT 2| & Waveform 41 &4
v’ StLEC| Waveform= J1CH 2 AFEStL CHE SHLt= Spectrogram @ 2 #HE 0] AHE (Multi-Format)
v MZCHE ZUO| [|O|E{= Positive Pair, CHE 2 C| 2 H|O|E{0f| A| &=t H|O| E{ = Negative Examples

Waveform Spectral

Max agreement

features features
Z; Z j
Waveform Spectrogram|
encoder encoder
X; X j
Waveform Spectrogram
augmentations augmentations
Xi Crop 1 Crop 2 X)

speEc);:?gcrtam
Figure 1: Illustration of the multi-format contrastive audio learning framework.
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v" Waveform, Spectrogram G| O|E{Of| @S 2 LI[O|E{ S& 7| M &
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Z; Z;
Waveform Spectrogram|
encoder encoder
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Extract
spectrogram

NS

Figure 1: Illustration of the multi-format contrastive audio learning framework.
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« U2 #9 oh5= ?lol SmCLR M-8 -H[O|E 29
v 1A G| O|E{ 2] Waveform:= Res1dNet-31 X &5+0] 29t
v’ 2K} G|O|E{ 2 Spectrograme CNN14 M-235}0f 2 Of

Waveform Max agreement Spectral
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Extract
spectrogram

Figure 1: Illustration of the multi-format contrastive audio learning framework.
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Figure 1: Illustration of the multi-format contrastive audio learning framework.
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«  AudioSet AlZ
«  MeanAverage Precision= H71(0.376)

Table 3: Test performance of shallow model classification on AudioSet with fixed representations.

Model Train inputs Eval inputs Test mAP
Triplet [20] log-mel log-mel 0.244
L3 [22] log-mel + video log-mel 0.249
CPC [21] waveform waveform 0.277
C3 [26] log-mel + video log-mel 0.285
MMYV [28] log-mel + video + text log-mel 0.309
Ours log-mel log-mel 0.329
Ours waveform waveform 0.336
Ours waveform + log-mel log-mel 0.368
Ours waveform + log-mel waveform 0.355
Ours waveform + log-mel ~ waveform + log-mel  0.376

Supervised [19]

waveform + log-mel

waveform + log-mel

0.439
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*  ESC50GIO|E X ALE
«  Accuracy = H7H90.5%)

Table 4: Test accuracy of linear classification on ESC-50 with fixed audio representations. Hy-
perparameters of the classifier are selected with split 1 and the average accuracy over 5 splits is

reported.
Model Train inputs Eval inputs Test accuracy (%)
L3 [22] log-mel + video log-mel 79.3
AVTS [24] log-mel + video log-mel 82.3
XDC [27] log-mel + video log-mel 84.8
GDT [30] log-mel + video log-mel 88.5
MMV [28] log-mel + video + text log-mel 838.9
AVID [29] log-mel + video log-mel 89.2
Ours log-mel log-mel 86.3
Ours waveform waveform 84.9
Ours waveform + log-mel log-mel 89.7
Ours waveform + log-mel waveform 89.3
Ours waveform + log-mel ~ waveform + log-mel 90.5
Supervised [19] waveform + log-mel log-mel 90.8
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Molecular Contrastive Learning of Representations
via Graph Neural Networks

Yuyang Wang'?, Jianren Wang®, Zhonglin Cao', and Amir Barati Farimani'>*"

'Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
*Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

4Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
“corresponding author: Amir Barati Farimani (barati@cmu.edu)

ABSTRACT

Molecular Machine Learning (ML) bears promise for efficient molecule property prediction and drug discovery. However,
labeled molecule data can be expensive and time-consuming to acquire. Due to the limited labeled data, it is a great challenge
for supervised-learning ML models to generalize to the giant chemical space. In this work, we present MolCLR: Molecular
Contrastive Learning of Representations via Graph Neural Networks (GNNs), a self-supervised learning framework that
leverages large unlabeled data (~10M unigue molecules). In MolCLR pre-training, we build molecule graphs and develop
GNN encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking,
bond deletion, and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same
molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework
significantly improves the performance of GNNs on various molecular property benchmarks including both classification and
regression tasks. Benefiting from pre-training on the large unlabeled database, Mo/CLR even achieves state-of-the-art on
several challenging benchmarks after fine-tuning. Additionally, further investigations demonstrate that MolCLR learns to embed
molecules into representations that can distinguish chemically reasonable molecular similarities.
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¢ Experiments — Molecular Property Predictions

+  Seven Classification Benchmarks (MoleculeNet) A&

Supervised Leamning / Self-Supervised or Pre-Training Method®{| CHeF 21t
¢ ROC-AUC (%)= "7t
Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV
# Molecules 2039 7831 1478 41127 1513 1427 93087
# Tasks | 12 2 1 1 27 17
RF 714400 769+1.5 713456 781406 86.7-0.8 68.4+0.9 632423
SVM 729400 81.8+1.0 669492 79.240.0 862+0.0 682+13 67.3+1.3
S od GCN!7 718409 709426 625428 74.043.0 71.642.0 53.6432 71.6+4.0
UpCIVIS GIN'S 658445 740408 580444 753419 70.14£54 573416 7T1.8425
Leamning SchNet!? 84.8422 772423 715437 702+34 76.6+1.1 53.9+37 71.343.0
MGCN?2 85.016.4 70.7+1.6 634442 738+16 734430 552418 702434
D-MPNN2 712438 689+13 90.5+£53 750421 853453 632423 7624128
SelES : Hu et al.*3 708415 787+04 789424 802409 859408 652409 81.4+20
upervised N-Gram™ 91.243.0 769427 855437 83.0+-1.3 87.6+3.5 632405 81.6+1.9
or MolCLRgey  73.8402 747408 86.7+1.0 77.8405 788405 669+12 84.0+18
Pre-Traming MoICLRgNy  73.6+0.5 79.8+0.7 93.2+1.7 80.6+1.1 89.0+0.3 68.0+1.1 88.6+2.2

Table 1. Test performance of different models on seven classification benchmarks. The first seven models are supervised
learning methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test ROC-AUC

(%) on each benchmark are reported.*

*Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.
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¢ Experiments — Molecular Property Predictions

Six Regression Benchmarks (MoleculeNet) AF&
Supervised Leaming / Self-Supervised or Pre-Training MethodOf| CH 2+ Z 1t
Root Mean Square Error (RMSE)=2 7t

Dataset FreeSolv ESOL Lipo QM7 QM3 QM9

# Molecules 642 1128 4200 6830 21786 130829

# Tasks 1 1 1 1 12 8

RF 2.03+0.22 1.07+0.19 0.88+0.04 122.7+42  0.0423+0.0021 16.061+0.019
SVM 3.14+£0.00 1.504£0.00 0.824+0.00 156.94+0.0  0.0543+0.0010 24.613+0.144
GCN!7 2.87+0.14 1.43+0.05 0.85+0.08 1229422  0.03660.0011 5.796+1.969
GIN'S 2.76+0.18 1.45+0.02 0.85+0.07 1248407  0.0371+0.0009 4.7414+0.912
SchNet!? 3.2240.76  1.05+0.06 0.91+0.10 74.2+6.0 0.0204+0.0021  0.081+0.001
MGCN>2 3.35+0.01  1.27+0.15 1.11+0.04 77.6+4.7 0.0223+0.0021  0.050-+0.002
D-MPNNZ  2.184+0.91 0.98+0.26 0.65+0.05 105.8+13.2 0.0143+0.0022 3.241+0.119
Hu et al.* 2.83+0.12 1.22+40.02 0.744+0.00 1102+64  0.0191+0.0003 4.349-+0.061
N-Gram™* 2.5140.19 1.10+0.03 0.88+0.12 125.6+1.5  0.0320+0.0032 7.636+0.027
MoICLRGey  2.3940.14  1.16+0.00 0.78+£0.01 83.1+4.0 0.0181+0.0002  3.552+0.041
MoICLRgin  2.204+0.20 1.11+0.01 0.65+0.08 87.2+2.0 0.0174+0.0013  2.357+0.118

Table 2. Test performance of different models on six regression benchmarks. The first seven models are supervised learning
methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test RMSE (for FreeSoly,
ESOL, Lipo) or MAE (for QM7, QMS8, QM9) are reported.*

#*Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.
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